
SED 504 Transcript

EPISODE 504

[INTRODUCTION]

 
[0:00:00.6] JM: Welcome to Software Engineering Daily. Today's episode fits nicely into some 

of the themes that we have covered recently; Cloud Foundry, Kubernetes and the changing 
landscape of managed services. Sean McKenna works on all three of these things at Microsoft. 

We spent much of our time discussing the use cases of container instances versus Kubernetes. 

Container instances are individual managed containers, so you could spit up an application 
within a container instance without having to deal with the Kubernetes control plane. Container 

instances might be described as serverless containers since you do not have to program 
against the underlying VM at all, and this begs the question; why would you want to use a 

managed Kubernetes service if you could just use individual managed containers?

Shawn explores this question and gives his thoughts on where this ecosystem is headed, but 
we, by no means, reached decisive answers. It's going to be an ongoing discussion as these 

different options evolve and we see what people use them for. 

Full disclosure; Microsoft, which Shawn works that is a sponsor of Software Engineering Daily. 

[SPONSOR MESSAGE]

[0:01:28.2] JM: Your company needs to build a new app, but you don’t have the spare 
engineering resources. There are some technical people in your company who have time to 

build apps, but they’re not engineers. They don’t know JavaScript or iOS or android, that’s 
where OutSystems comes in. OutSystems is a platform for building low code apps. As an 

enterprise grows, it needs more and more apps to support different types of customers and 
internal employee use cases. 

Do you need to build an app for inventory management? Does your bank need a simple mobile 

app for mobile banking transactions? Do you need an app for visualizing your customer data? 
OutSystems has everything that you need to build, release and update your apps without 

© 2018 Software Engineering Daily �1



SED 504 Transcript

needing an expert engineer. If you are an engineer, you will be massively productive with 

OutSystems. 

Find out how to get started with low code apps today at outsystems.com/sedaily. There are 
videos showing how to use the OutSystems development platform and testimonials from 

enterprises like FICO, Mercedes Benz and Safeway. 

I love to see new people exposed to software engineering. That’s exactly what OutSystems 
does. OutSystems enables you to quickly build web and mobile applications whether you are an 

engineer or not. 

Check out how to build low code apps by going to outsystems.com/sedaily. Thank you to 
OutSystems for being a new sponsor of Software Engineering Daily, and you’re building 

something that’s really cool and very much needed in the world. 

Thank you, OutSystems. 

[INTERVIEW]

[0:03:19.6] JM: Sean McKenna is a principal program manager at Microsoft. Sean, welcome to 
Software Engineering Daily.

[0:03:24.6] SM: Thanks, Jeff. Good to be here. 

[0:03:26.6] JM: Yes, it's great to have you. You've been at Microsoft since the beginning of 

Azure. Describe the early days of when Microsoft started building a cloud business. 

[0:03:39.2] SM: I’ve actually only joined Azure in the last couple of years, but when I was 
working elsewhere at Microsoft, I was a user of Azure and so I sort of have seen the evolution of 

the platform. It's interesting, we sort of started out, Microsoft being a platform company, thinking 
of the cloud in terms of developer platforms, and so we started with what we now call cloud 

services, which is effectively a platform as a service layer where you could create your 
application and it would automatically spin up the underlying infrastructure for you and create 

© 2018 Software Engineering Daily �2



SED 504 Transcript

the necessary networking components and low balancers and all of that and it would all happen 

sort of behind-the-scenes, which was a great developer experience for a particular customer 
profile. In those days it was really .NET developers using Visual Studio. If you fell into that 

camp, you had a great sort of end-to-end experience. 

What we found overtime, what the Azure team found overtime was, “Hey, there’s a much 
broader set of use cases that people are looking to tackle with the cloud,” and that's where 

Amazon in particular had really driven this revolution around just infrastructure as a service. So 
having the ability to just use raw virtual machines and connect those up to other basic 

components that the customers might've been used to running in an on-premises environment, 
and so that's where we went ahead and introduced Azure's IaaS services and that's really been 

what's driven it to take off to date, although now we’re sort of moving into the next phase and 
actually interestingly moving back up the stack with platform layers. So it's been kind of an 

interesting full circle evolution for Azure. 

[0:05:19.9] JM: What’s funny, that sounds similar to what Google's approach. Google started 
out with App Engine, and App Engine was beloved by some people, but was probably a little too 

opinionated for the vast majority of use cases. It sounds like that's quite similar to what you had 
going on. 

[0:05:40.1] SM: Exactly. Yeah, I think both of those were in some ways sort of ahead of their 

time, that they were too high of an abstraction for what a lot of customers were looking to do at 
the time, which was just, “Hey, I want to pull the plug on my data center. I want to be able to 

move my existing applications,” what we referred to as sort of lift and shift, “take my existing 
applications that are running BMs, around bare metal in my on-premises environment. Just 

move them into the clouds. That's all I want to do. I don't want to rewrite my applications. I don’t 
want to re-platforms on to your specific offering. I just want to kind of get out of get out of my 

data center.” That was sort of one part of it, and then the other was, of course, there were 
specific things you could do in those environments. There were specific frameworks and 

languages that were supported, and so if you didn't fit into that particular bucket, then there 
wasn't really a great solution for you. So that's where these IaaS offerings as just kind of base 

building blocks for building applications, which are in most cases a lot harder for developers to 

© 2018 Software Engineering Daily �3



SED 504 Transcript

build applications on, but at least, really, anything you wanted to build, you could do with that 

base infrastructure. 

[0:06:51.1] JM: You work on a number of different products at Azure. One of them is Cloud 
Foundry. You also work on some Kubernetes related products and these new container 

instances, and I've been doing a number of shows recently about both Cloud Foundry and 
Kubernetes and I'm trying to get an understanding of the business landscape, how enterprises 

are choosing between the different platform as a service offerings, and it seems like for some 
period of time, really, they just opted for Cloud Foundry, and that was pretty much the only game 

in town. If you're a bank and you want to be on a platform-like experience in the cloud or if 
you're a telco, these are the types of customers that I've seen the most use Cloud Foundry. Are 

you getting a sense that Kubernetes is appealing to them, that they’re migrating away from 
Cloud Foundry towards Kubernetes or is it a complementary sort of thing? How has Kubernetes 

affected that calculus for these big enterprises?

[0:08:06.2] SM: Yeah. Certainly, what we've seen is a lot of the big enterprises have historically 
liked Cloud Foundry for, first of all, the portability across multiple environments, but also just 

having sort of an end-to-end opinionated developer experience that everything is sort of 
available out-of-the-box and you don't have to think about how to set up going from writing code 

to having it deployed in a cloud environment to doing day two operations, thinking about logging 
and upgrades and managing infrastructure. That's been something that that customer profile 

has gravitated towards. 

I think with the rise of containers, there's been a lot of interest in Kubernetes. It’s kind of the de 
facto container orchestrator, and in fact, now, Cloud foundry has incorporated Kubernetes into 

sort of its ecosystem. So now Cloud Foundry is actually an umbrella term for both the sort of 
application run time, which is what was previously known as Cloud Foundry and then the 

container runtime, which is actually a distribution of Kubernetes. 

They're looking to bring those together under one roof, because there's a lot of customers that 
are looking for some mixture of the two, where you might want to have your custom built 

applications where you actually have developers inside the organization writing custom software 
and you want to have them be able to deploy that into a cloud environment without having to 

© 2018 Software Engineering Daily �4



SED 504 Transcript

think about how do I actually go about containerizing this and managing it as a container. Just 

have that sort of whole workflow managed by the platform, and then there're other cases where 
you potentially want to take off-the-shelf software, which is now largely distributed in containers 

and be able to deploy that into a Kubernetes environments. Those are kind of potentially 
working in concert with each other. 

The other thing that we are seeing is that the Kubernetes ecosystem is maturing and kind of 

moving up the stack. I think overtime we’ll see the full Kubernetes sort of full sort of CNCF stack 
actually provide potentially a platform experience that is more in line with what people have 

been able to historically get with something like Cloud Foundry. It’s a question of whether it ever 
gets to the level of opinionation that something like Cloud Foundry has, but I think it is starting to 

move a little bit further up that stack, such the difference in the level of technical expertise that 
you need to be able to run Kubernetes versus Cloud foundry may actually reduce. 

[0:10:46.9] JM: Yeah. I think you're referring to the Kubernetes platforms like OpenShift or 

Platform nine or rancher. There's a bunch of these different platform as a service that are just 
built on top of Kubernetes. 

[0:11:02.2] SM: Yeah, that’s one part of it, is sort of the commercial distributions of Kubernetes. 

There's also sort of all the pieces that are starting to fill in around Kubernetes. One of the things 
that Brendon Burns, who’s one of the founders of Kubernetes and now runs container team that 

Azure, has always said is, “Kubernetes is not meant to be the end of the story. It was meant to 
be a sort of base building block that other things would get built on top of,” and we’re starting to 

see that now with the community rallying around things like Prometheus for logging, Istio for 
service mesh. There’re these pieces that are getting plugged in together that when you put them 

together, they're not parts of the Kubernetes core necessarily, but if everybody rallies around 
those being, the sort of de facto standards in each of those particular areas, then you start to 

build a stack that is more of an end-to-end story. Whereas Kubernetes by itself, it’s the container 
hosting and orchestration, but there's a bunch of exercises left of the reader to actually build 

applications and operate them on day two. So we’re sort of still seeing that maturation process 
happening in that community, but I think there is a lot of consensus building around some of 

those tools. 

© 2018 Software Engineering Daily �5



SED 504 Transcript

[0:12:25.3] JM: Help me understand the mindset of the telcos or the banks or the oil companies 

that would be making this kind of selection. Which pads am I going to start to move my 
infrastructure to? How much of these typical enterprises, how many of them are what 

percentage of their infrastructure have they moved to a PaaS Is there a lot of migration that is 
still entirely on legacy systems, like do you have a percentage in mind?

[0:13:02.2] SM: That really depends on the organization. Some have been fairly aggressive. I 

would say most of them are still running a minority of their workloads in some of these 
environments. They’re usually looking for low hanging fruits that they can start to migrate over 

as kind of test cases, and then slowly expand that through the organizations. So I don’t know, 
percentage-wise, maybe 10%, 20%, maybe a little bit more. 

[0:13:29.5] JM: 10%, 20%, they have done the migration and they still have like 80% left. 

[0:13:33.6] SM: Yeah, that's what see — With a fair number of customers, if you look at 

something like Cloud Foundry, for example, typically what customers will do is they'll get a 
Cloud Foundry environment set up, they'll cherry pick a couple of applications that they want, 

either existing applications that they want to move into that environment, or often if they're doing 
greenfield development, they want to build new applications with the sort of micro-service 

oriented architecture and they'll target those to move into Cloud Foundry and kind of start to 
build the organizational muscle both in terms of development as well as operations using that 

environment and kind of make everybody comfortable with that model. 

Then after they've got that up and running and it’s been successful, they’ll go move on to the 
next phase and sort of slowly move more and more applications over. That's typically what we 

see. It's not that they’re going to do a big bang, try to move everything over and in three months, 
six months, that kind of thing. People want to feel comfortable with working with these new 

platforms. In a lot of cases, they’re changing from an IT model that they've been using for 10, 
15, 20 years. So there's naturally some hesitation there to moving to an entirely new way of 

building and operating software. 

[0:14:50.6] JM: When you're talking to these customers — Since you’re in charge of the Cloud 
Foundry at Azure, but you’re also heavily involved with the Kubernetes people, are you starting 

© 2018 Software Engineering Daily �6



SED 504 Transcript

to talk to vendors where you're not sure how to advise them or are you helping them pick 

between like Kubernetes versus Cloud Foundry? How are those conversations going?

[0:15:12.3] SM: Yeah, we definitely get a lot of customers that are asking for guidance on sort of 
which model to adopt. At this point, typically it comes down to sort of the maturity of the IT 

organization within in that enterprise. So if a company is, like I was saying before, looking for 
kind of an opinionated end-to-end platform for doing custom in-house development of 

applications in a cloud native way, Cloud Foundry is probably the way that they want to go 
today, because it does give them that sort of end-to-end story. They don't need to think about 

stitching together a bunch of different pieces around Kubernetes. 

Now, that's very much up a point in time kind of conversation and it may change over time, but 
typically, today, if somebody's looking for that in opinionated end-to-end story, it's going to be 

one of those higher-level PaaS layer, so Cloud Foundry or sort of the Microsoft landscape, 
something like service fabric, which is more of our .NET Windows oriented platform. 

for customers who are potentially a little bit more advanced, or at least trying to build up that 

muscle and are specifically attracted to some of the benefits of containers, so sort of the idea of 
immutable infrastructure, being able to create those application packages that are going to run 

consistently across environments and are willing to do a little bit more of the legwork in terms of 
actually building out a platform by pulling together those additional layers, some of which I was 

referring to earlier in terms of logging and service mesh and that sort of thing. Then Kubernetes 
community is growing pretty rapidly and there're a lot of resources available there to help those 

customers, but it is something where they're going to have to do a little bit more work as it 
stands today.

[SPONSOR MESSAGE] 

[0:17:20.1] JM: Azure Container Service simplifies the deployment, management and 

operations of Kubernetes. Eliminate the complicated planning and deployment of fully 
orchestrated containerized applications with Kubernetes. You can quickly provision clusters to 

be up and running in no time while simplifying your monitoring and cluster management through 
auto upgrades and a built-in operations console. Avoid being locked into any one vendor or 

© 2018 Software Engineering Daily �7



SED 504 Transcript

resource. You can continue to work with the tools that you already know, such as Helm and 

move applications to any Kubernetes deployment. 

Integrate with your choice of container registry, including Azure container registry. Also, quickly 
and efficiently scale to maximize your resource utilization without having to take your 

applications off-line. Isolate your application from infrastructure failures and transparently scale 
the underlying infrastructure to meet growing demands, all while increasing the security, 

reliability and availability of critical business workloads with Azure. 

Check out the Azure Container Service at aka.ms/acs. That’s aka.ms/acs, and the link is in the 
show notes. Thank you to Azure Container Service for being a sponsor of Software Engineering 

Daily.

[INTERVIEW CONTINUED]

[0:18:48.4] JM: You work on several other projects, like I said. One project is the virtual-kubelet, 
which is a system for connecting Kubernetes to other APIs. This is like if you are running a 

Kubernetes cluster and you want to connect to other cloud service APIs through a virtual-
kubelet, you can do that. Explain what a virtual-kubelet is. 

[0:19:12.2] SM: Yeah. A little bit of history. So in July of last year we launched a service called 

Azure Container Instances, and the easiest way to think of that is basically Kubernetes pods as 
a service. So the ideas you can run individual containers or what we call container groups, 

which is effectively a pods on multiple containers that share a lifecycle and are cohosted on the 
same machine and have access to each other via local network and so on. 

You can create those in the Azure cloud without having to provision any underlying infrastructure 

first. Tight, if you want to run pods in Kubernetes, you set up Kubernetes, you’re creating a 
cluster of BMs that you then have to manage at some level. So the idea behind ACI is I can just 

deploy pods or container groups directly into Azure without having to do that. 

As part of the design of ACI. one of the things that we were kind of wrestling with is, okay, when 
we launched this service, which is your allowing you to run containers without underlying 

© 2018 Software Engineering Daily �8



SED 504 Transcript

infrastructure, where we do per second billing, there's a number of different things that are quite 

attractive about it. Naturally, we’re going to start to get questions about, “Okay. How do I scale 
out? How to I create a number of replicas of these containers? How do I do upgrades to them? 

How do I manage availability?” Kind of all of the things that you think about container 
orchestrator doing, so something like Kubernetes. 

The decision we made was rather than go and add all of those capabilities to ACI, to that core 

product, which is ultimately always going to be something that is specific to Azure, it's a core 
part of the Azure infrastructure, that we would work sort of in conjunction with Kubernetes and 

allow Kubernetes to be the orchestration layer. It's a fairly mature orchestration API. There's a 
lot of activity in that community, and so we want to actually be able to bring those two things 

together so you can get the best of ACI with the best of orchestration in Kubernetes. 

So we launched in connection with the launch of ACI, we’ve created a project called the ACI 
connector, and the idea behind that was to allow a Kubernetes cluster to have this kind of virtual 

node that would allow you to schedule pods into ACI in addition to scheduling them on BMs. 
When we built that project, it was ACI specific. So we had literally just created one that would 

only enable you to deploy pods into ACI. 

But after we launched it, there was a bunch of interest from other similar providers. So Hyper.sh, 
for example, which is one of the leaders in this kind of serverless container market actually went 

and built sort of an equivalent connector that would allow customers to target Hyper instead of 
ACI, and so we saw this kind of interesting in this model of a hybrid between traditional 

Kubernetes s cluster and these sort of serverless containers or pods as service offerings. 

So we decided to go ahead and sort of up level our ACI connector project into something that 
would be a pluggable framework so that different providers could actually plug into that model. 

So that's what we launched at Cube-Con, was the open-source, sort of upstream project for 
virtual-kubelet along with a provider for ACI, and we’re working with hyper there in the process 

of adding a provider for hyper, and we’ve heard from a number of other companies both at 
Cube-Con and subsequently that are interested in adding those providers. That's basically the 

idea, is to allow you to have a kubelet, which is not a traditional kubelet in the sense that it's not 

© 2018 Software Engineering Daily �9



SED 504 Transcript

an agent running on a single VM, but is representing kind of an agent or a node that has infinite 

capacity. 

[0:23:10.6] JM: What’s an example for how I would use the virtual-kubelet?

[0:23:14.0] SM: Yeah. We expect there’s kind of eventually going to be two primary ways that it 
gets used. The first one is the ability to spill over capacity into something like ACI. If you 

imagine, today, if you're running a Kubernetes cluster, you’ve got a set of VMs. Part of the value 
that you're getting from using container orchestrator is you’re getting a pretty high utilization, 

because you’ve got this sophisticated scheduler that can map the workloads that you were 
looking to schedule on to the set of resources that you have and make sure that you’re packing 

those in as efficiently as possible. But typically, you're still going to leave a fair bit of capacity on 
each of those VMs for the potential that you might get; an external spike of traffic if you’re, say, 

a retail website that needs to be prepared for some flash sale, or if you have a like a regular 
batch job that needs to run at the end of the week, the end of the month, or maybe you're 

running Jenkins inside of your cluster and you've got kind of spiky traffic as a result of when 
you've got builds the need to run. So you keep that additional capacity around for when those 

workloads are going to come in, but all of the time when those things are not happening, you 
effectively got wasted resources. So you're paying for something that you’re not using. 

The idea behind the virtual-kubelet and things like ACI is you can connect that into that cluster 

and use that as effectively like your overdraft protection if when you need that additional 
capacity. So that allows you to really have your VM-based cluster, the environment for running 

your sort of standard workload, your average workload, drive up that utilization to 80%, 90%, 
and if you need it, have that additional capacity come via the virtual-kubelet from something like 

ACI. That's sort of one scenario that we’re looking at. 

The other one is we think eventually that a lot of customers are just going to want to run 
effectively, like a serverless Kubernetes where you can have Kubernetes scheduling pods into 

infrastructure where you don't necessarily see all of the individual VMs. So in that case you 
would purely be using a Kubernetes hosted control plane, such as the Azure container service 

that we offer, or others have equivalent offerings, but then have the actual hosting environment 
be managed by, like in this case, Azure, where the infrastructure would be hidden from the 

© 2018 Software Engineering Daily �10



SED 504 Transcript

customer. You can just focus on building and managing your containers, which is quite a nice 

model, because if you think about it today purely in terms of scaling, there's always this kind of 
two level scaling problem, where when you need to add additional capacity to your application, 

your containerized application running in Kubernetes, you would initially scale out the number of 
pods. You’d use the horizontal pod auto scaler to add additional capacity that way, but 

eventually you're going to run up against the limits of the infrastructures. So how many VMs you 
have to actually schedule those pods? So you’re always having to do this sort of back-and-forth 

dance to make sure you have sufficient infrastructure to manage the scaling in and out of those 
pods. Whereas if you move to a model where it's all kind of managed for you, you can purely 

think about it at the container or the pod level. 

[0:26:45.0] JM: So that world in the future with the serverless Kubernetes idea, is that the same 
thing as the container instances? 

[0:26:56.7] SM: Container instances is the hosting environment for the individual pods. You can 

think of it as — When I talk about sort of the serverless Kubernetes, it is the Kubernetes API. So 
thinking in terms of Kubernetes deployments and services and pods and all of the Kubernetes 

constructs, but the actual runtime hosting environment would be something like ACI. I would still 
be using kubectl and the Kubernetes API, but rather than those pods landing on VMs that I have 

to manage and think about scaling and all of that, they would just land in — You can sort of think 
of it as this sort of PaaS in the sense that the infrastructure is hidden, but you're still managing 

everything to Kubernetes. You can do — kubectl get pods and see all the pods that are running. 
You could rolling upgrades with deployments. All the things that you would expect to be able to 

do with Kubernetes, it's just that rather than those pods running in VMs, they’re running in this 
kind of hidden infrastructure.

[0:28:01.8] JM: So in that world, what differs from that world where you have this serverless 

control plane that's managing Azure container instances versus a managed Kubernetes 
offering?

[0:28:18.5] SM: Yeah. So when we talk a managed Kubernetes today, and this is the case for 

other managed Kubernetes offerings as well, is the management piece is effectively the master 
nodes. In a Kubernetes cluster, you’ve got the master nodes and then the agents, where the 

© 2018 Software Engineering Daily �11



SED 504 Transcript

masters are running the API server, the scheduler, etcd, all of the kind of the brains of the 

cluster. Managed Kubernetes services take those components and move them into the IaaS 
provider’s infrastructure. So in our case, move them into infrastructure that we manage in Azure, 

but you still have VMs in your subscription, in your account that are the target of those 
deployments. Now, those VM's may themselves be managed at some level, but you are still 

looking at the VM as the unit of billing, as the unit of scaling, and to some degree, as something 
that you need to manage. 

If you move to a model that is sort of a purely serverless Kubernetes kind of model, you still 

have the management piece that runs inside the IaaS provider’s infrastructure. So that part 
doesn't change. What changes is that the target of your deployment is not the set of VMs in 

your subscription, but is something like ACI So you would, in terms of the resources you would 
see in an Azure, for example, you would just see the containers or just see the pods as a first 

class IaaS resource, rather than if you set up a Kubernetes cluster today in Azure and go into 
the Azure portal, for example, or use CLI, there’s no way for me to see the set of pods that I’ve 

deployed, because those are sort of hidden inside of Kubernetes in a — 

[0:30:10.9] JM: That’s even on AKS. 

[0:30:13.7] SM: Yes. Those pods are effectively living inside of VM's, and so from an Azure 
perspective, all I see are VMs, right? I’m going to have to go through Kubernetes to see the 

actual pods. In serverless world, I’d be able to go through the Kubernetes API and the kubectl, 
cli, and typically that's what I would do, but from an IaaS has perspective, I would see my pods 

rather than any VMs, and that would be my unit of billing and my unit of scale. So now the 
infrastructure, the underlying VMs just get hidden away, which we sort of think of as just the next 

natural step in IaaS, right? With IaaS today, we will give you virtual machines that sit on top of 
physical infrastructure that you don't ever see. 

In the same way here, we’re giving you containers as an IaaS primitives that sit on top of 

infrastructure that you don't see. It's kind of just a natural evolution of virtualization and of 
infrastructure as a service that we think makes sense in the context of something like 

Kubernetes. 

© 2018 Software Engineering Daily �12



SED 504 Transcript

[0:31:22.3] JM: What surprises me is that this abstraction of the container instance was not 

available like two years ago. When Docker started getting popular, there was not a way to buy 
and provision a single container. There was Heroku, which you can get Dynos, which I think a 

Dyno always was a container. Why is that? Why didn't we have the major cloud providers 
offering the single container instance as a purchasable abstraction? 

[0:31:55.4] SM: I think it was because a lot of — The container orchestration platforms we’re 

looking to operate with the lowest common denominator kind of environment. Azure container 
instances is something that is effectively a service that we provide in Azure that you wouldn't be 

able to pick up and take to you on-prem environment, for example. Whereas the orchestration 
platforms wanted to be able to run either directly on physical hosts, around VMs in your on-prem 

environment or in public cloud providers, and so make sure that those work, those APIs work 
everywhere. So that was the natural place to start, but I think what we’re going to see now is at 

least every cloud provider will likely have some kind of offering that is purely container-oriented. 
I think it's just a natural evolution. Everybody wanted to make sure that their offering was 

working in all environments, but now we’ll start to see people sort of moving up the stack. 

[0:33:01.6] JM: When that is unavailable, purchasing and use deployment model of this 
serverless Kubernetes or serverless containers, container instances that you can just purchase 

one by one. It’s a very appealing abstraction for many applications that I can think of. Where 
does that leave something like your managed container service, that AKS? Like who will be 

using that in four or five years? Do you think there’ll be more platforms that will evolve that will 
develop that people will deploy their own platforms on top of AKS and then sell whatever is the 

higher level abstraction that they build on top of that?

[0:33:49.6] SM: We certainly expect that to happen, but I don't think — The whole idea of the 
virtual-kubelet project is that we think things like ACI and AKS are complementary rather than 

competitive. So we think there's a set of use cases for ACI standalone that we see people doing 
today where they’re spinning up CI jobs or they're doing kind of simple task automation or very 

simple applications, but as soon as they move into more complex applications or they want to 
have some of the things I was mentioning earlier in terms of scaling and rolling upgrade and 

service discovery and all of the kind of the things that orchestration APIs provide, that's when 

© 2018 Software Engineering Daily �13



SED 504 Transcript

they want to move over to something like Kubernetes, in our case, in the context of AKS, but 

they still might want to have the actual hosting not in VMs, but just in managed infrastructure. 

We think there's this kind of marrying of the capabilities of an orchestration API with the hosting 
model, hosting and billing model of ACI. You might be building a multiservice, micro-service-

oriented application and you’re deploying that as lie a Kubernetes deployment or you’re using a 
Helm chart or what have you, so all the things you would typically do with Kubernetes, but have 

those pods ultimately be deployed in ACI and paid by the second for however long they’re 
running and not have to think about scaling out the set of VMs. We really think that long term, 

those things continue to be complementary, where we’re just swapping out the core hosting 
infrastructure of VMs to being this sort of higher level abstraction. 

[0:35:39.7] JM: In the build out of the managed, the container instances, were there any 

specific technical challenges to work out that come to mind?

[0:35:51.8] SM: Yeah. One of the biggest things is we are providing full hypervisor isolation for 
these containers running in ACI, and so making sure that we could run them in managed 

infrastructure that we provide, which is sort of naturally multitenant, but have them be 
hypervisor-bounded but still give you the expected sort of startup times that you would come to 

expect from containers. We've been working with both the Windows team in terms of hyper-V 
containers and being able to take advantage of some of the capabilities that they’ve added there 

and some of the performance improvements, and then we've also been working on the Linux 
side with Intel Clear Containers or what's now been rebranded to Kata Containers where the 

idea is to have kind of the best of both worlds of what you have with a traditional VM where you 
have strong isolation between environments running on the same physical infrastructure and 

containers where you have this much smaller images and much faster startup times, and so 
making sure that we’re able to provide that hypervisor isolation was one of the big challenges 

and something we had the kind of go down a number of paths to make sure that in terms of 
network access and storage and kind of how we do logging, that we had that clear isolation, 

because that’s something that customers are looking for. If they're going to run these 
applications in this hidden infrastructure, they need to feel confident that we are actually 

isolating those environments and providing them equivalent level of isolation that they would get 
from a VM. 

© 2018 Software Engineering Daily �14



SED 504 Transcript

[SPONSOR MESSAGE]

[0:37:48.8] JM: If you are building a product for software engineers or you are hiring software 
engineers, Software Engineering Daily is accepting sponsorships for 2018. Send me an email, 

jeff@softwareengineeringdaily.com if you're interested. 

With 23,000 people listening Monday through Friday and the content being fairly selective for a 
technical listener, Software Engineering Daily is a great way to reach top engineers. I know that 

the listeners of Software Engineering Daily are great engineers because I talked to them all the 
time. I hear from CTOs, CEOs, directors of engineering who listen to the show regularly. I also 

hear about many newer hungry software engineers who are looking to level up quickly and 
prove themselves, and to find out more about sponsoring the show, you can send me an email 

or tell your marketing director to send me an email, jeff@softwareengineering.com. 

If you're listening to the show, thank you so much for supporting it through your audienceship. 
That is quite enough, but if you're interested in taking your support of the show to the next level, 

then look at sponsoring the show through your company. So send me an email at 
jeff@softwarengineeringdaily.com.

Thank you.

[INTERVIEW CONTINUED]

[0:39:16.5] JM: As the world moves towards this world where people are using Kubernetes 

more and more, and Kubernetes is on all the cloud providers, it's a managed service that's 
present everywhere, how does that change the calculus of a cloud provider? What's in the 

future for a cloud provider strategy? 

[0:39:38.3] SM: Yeah. So we kind of see it as, eventually, managed Kubernetes services are 
just going to be table stakes and then it's not going to be something that any individual cloud 

provider can differentiate on n its own. So we need to provide additional value. We need to 
make it attractive for developers or organizations that want to build on top of Kubernetes to 

© 2018 Software Engineering Daily �15



SED 504 Transcript

come to Azure. So there's obviously, in our case, the main benefits of our IaaS that we typically 

talk about are regional coverage. We’ve got the largest number of regions worldwide. So for 
large enterprise customers who are looking to build out global deployments and potentially 

deploy applications into mainland China or into Germany and deal with data sovereignty or 
privacy regulations in those countries, we offer a great model for doing that. 

We also expect that one of the things that we will do is really build on our legacy of building 

great tools for developers and really democratizing technologies. So we’re making a lot of 
investments in providing great tooling for Kubernetes. So we are now the stewards as a result of 

our acquisition of [inaudible 0:40:57.6]. We’re not the stewards of the Helm Project. That same 
team has built out draft, which is making the developer inner loop for targeting Kubernetes much 

easier. Tools like Brigade, which is this event-driven pipelines in Kubernetes and [inaudible 
0:41:15.2], which allows you to do sort of CI/CD kind of models. There’s a number different tools 

there. Building integrations with things like BS code. So really trying to provide that end-to-end 
developer experience where we will naturally make it the easiest way or the easiest 

environment to target to be Azure, and so that something natural for developers who are 
targeting Kubernetes to deploy their applications into Azure. We don't expect to really 

differentiate to a large extent on the core managed Kubernetes services. It’s going to be all the 
things that come around it. 

[0:41:51.2] JM: Do you think that like the clouds are going to become increasingly differentiated 

because everybody is on Kubernetes? Because, I mean, it feels like several years of the core 
offerings were fairly similar from cloud to cloud, but it feels like now things are starting to get 

more differentiated. You're starting to see more exotic services across the different cloud 
providers. Do you think they'll continue?

[0:42:18.9] SM: Yeah, I think there’s going to be a mixture. In the context of Kubernetes, like I 

said, I think at this point now we have announcements or running services from the three major 
cloud providers around managed Kubernetes services. So that will be fairly consistent. In fact 

CNCF has a Kubernetes certification program specifically to ensure that these different 
distributions and these different services are consistent to allow customers to make their 

applications portable. 

© 2018 Software Engineering Daily �16



SED 504 Transcript

Yeah, it's going to be up to the cloud providers to determine how they want to differentiate 

beyond that. I think we’re going to see a mixture of consistent set of services. If you think about 
things like managed database services, we have — In Azure, we have a managed SQL Server 

and as well as a managed MySQL and managed PostgreS. So those are — At least in the case 
of MySQL and PostgreS, those are standard open APIs that I expect either exist or will be 

services, equivalent services from other cloud providers. That's something you can take 
advantage of if you want to have your application be portable. 

On the other end of the spectrum, we’re going to build differentiated services. So things like 

CosmosDB, which is our globally distributed NoSQL database, which itself has a set of open 
APIs that sit on top of it but has differentiated capabilities. So that's going to be, I think, the 

decision of individual customers where they want to go deep with a particular cloud provider 
because they see that there's differentiated value there, versus trying to keep their applications 

and their operational model consistent so that they can move them between environments. We 
see kind of a mixture of those two types of customers with different approaches. 

[0:44:03.8] JM: So let's say I’m a developer that wants to take advantage of exotic services on 

all the different cloud providers, does that mean that I will more than likely end up's spinning up 
a Kubernetes cluster on those different cloud providers as well so that I can also have bespoke 

services on those — Running in my own containers on those cloud providers that are interfacing 
with the exotic services, like maybe I’ve got a Kubernetes cluster on Azure that is interfacing 

with CosmosDB, because I want that, and then I've got a Kubernetes cluster on Amazon, 
because I want to interface with some Amazon managed services. Do you think that's a viable 

model or is it more likely that we’ll just have single Kubernetes cluster on one of these cloud 
providers, and if you want to interface with an exotic service, you just hit their Rest API? What’s 

your vision for that?

[0:44:59.4] SM: I think, typically, we’ll see customers deploying Kubernetes clusters in the cloud 
provider where they want to connect to those services. You can employ pretty small clusters and 

you have the consistency and the mutability of containers such that those containers running in 
those different environments will operate the same way, and so you don't necessarily need to 

run everything in one environment. It also typically makes things easier in terms of networking 
and security to have those services running in the same environment, and so I expect that 

© 2018 Software Engineering Daily �17



SED 504 Transcript

there's going to be that kind of model of you run a set of applications and it may be the same 

application running in different cloud environments, or more likely, I think from what we've seen 
with customers, is they kind of choose the types of applications that makes sense to run in 

different cloud providers depending on the services that they want to take advantage of or 
things like I mentioned with regional coverage, where if they've got some application that is 

specific to, say, the German market or the Chinese market, that they might run those in in 
Azure, because we have coverage in those regions. Yeah, I think it's going to be mostly that 

you'll run your stateless applications in that cloud provider and connect to the cloud provider 
services

[0:46:24.4] JM: This is one thing that I think is understated about the idea of multi-cloud, is that 

people are going multi-cloud sometimes to take advantage of the upside of being on a different 
cloud, and I think the common narrative or what I've heard the most is that you want to be on 

multi-cloud, because it's like you want to be ready to lift and shift or you want to be disaster 
recovery tolerant. Maybe that's true, but honestly I've seen much more of the former rather than 

the latter. 

[0:46:56.3] SM: Yeah, absolutely. I mean, we do here customers who are thinking about multi-
cloud in the sense of they’re going to be doing kind of like per second arbitrage of moving 

applications between different cloud providers based on cost and things like that, but I think 
that's — In a lot of cases, that kind of model is a bit of a pipe dream, and in any case, it's going 

to be pretty small. 

[0:47:20.3] JM: Although that was everybody's pipe dream. When all these cloud provider 
started standing up, people were like, “Oh! Who's going to build the market between them?” 

That never really happened, because everything went to zero. 

[0:47:33.5] SM: No. Yeah, and I mean, by virtue of the competition being so fierce, the costs 
don't typically get too far out of alignment, at least not enough to warrant trying to really make 

significant return from moving things between them. Yeah, I agree. I think most of the time, 
customers are choosing — If they are indeed doing multi-cloud, it's because they see different 

values from the different cloud providers, and that's great. I think having a world in which there's 
a set of things that are consistent, we’re all going to provide VM's, we’re all going to provide 

© 2018 Software Engineering Daily �18



SED 504 Transcript

some standards-based data services. Potentially, we’re all going to provide containers as a 

service at some point, but then we’re also going to go and do differentiated things and we’re 
going to do interesting innovations and we’ll see kind of what things the market reacts to. I think 

that's kind of the perfect competitive environment, frankly. 

[0:48:32.2] JM: Can you give me a little bit of insight into how product development works at 
Azure, like that on the cloud stuff that you work on, just because I do a lot of shows with — 

Products that are easier to think about and how you would structure an engineering team 
around, like shows where I'm doing something like about a dating app, like I did some shows 

about Tinder and some shows about thumbtack, which is a marketplace, and it’s kind of easy to 
understand, “Okay. There are some operational people. There are some backend engineers. 

There are some frontend engineers.” Complicated services, but it's kind of straightforward when 
you think about it. Compared to developing services on top of a cloud provider, my 

understanding of how to manage that kind of breaks down. Maybe you can give me some 
insight on how management and strategy works for the teams that you work on. 

[0:49:26.7] SM: Yeah. Organizationally, we have teams in terms of kind of the core 

infrastructural components, so compute storage networking. We have teams that kind of own 
those as base infrastructure layers, and then they’re sort of further subdivided based on largely 

sort of around the architecture. They have to work together to provide that base set of 
capabilities, and then on top of that, building higher-level services like ACI. That's actually more 

of a traditional kind of product team where we’ve got myself and a couple of other folks as 
product management and then we have an engineering team of about 10 people at this point 

where we’re just managing a backlog of items based on customer demand and kind of where 
we want to take the service, and we do sort of monthly planning and sprints and really drive that 

service kind of end-to-end. It sort of depends on the level of the stack that you're at how the 
teams operate. 

[0:50:33.8] JM: Okay, makes sense. Last question, I did a show with Brendan Burns and also a 

show Joe Beda, and they both said something similar that really struck me, which is they 
articulated this idea that there's going to be this different future where people can write — Well, 

at least this is the way Brendon put it is, write their own smaller software teams, write and 
distribute proprietary software using Kubernetes as that distribution layer. So I could sell — 

© 2018 Software Engineering Daily �19



SED 504 Transcript

Maybe I create my own database and I sell it on Kubernetes through helmet, which is that's 

something that doesn't really exist in software today. If you buy software, you're mostly buying it 
as a subscription. You're buying software as a service, but you can imagine just paying a flat fee 

for a binary and then you’re paying for the ongoing cost of running it on a cloud provider which 
would be de minimis compared to the cost of subscription cost of a SaaS company. It sounds 

like you agree with that potential future. Do you have any ideas for what the roadmap looks like 
to getting there?

[0:51:47.6] SM: Yeah. So that’s something that we’re looking at currently in the context of the 

Azure marketplace. It's still fairly early days I would say. We don't have concrete timelines for 
when we might have something there, but yeah, we have a pretty rich marketplace today for 

software being distributed in VMs, but what we’re seeing is a lot of ISPs, being interested in 
doing distribution via containers. So I think there's a lot of opportunity there for thinking about 

different licensing models and different pricing models for ISV software that might be running 
alongside the domain application in a Kubernetes cluster that the customer manages. Yeah, 

definitely a huge area of opportunity and one where I think we can provide a lot of monetization 
opportunities for ISVs. So it’s pretty exciting.

[0:52:42.3] JM: Do you think that'll look like a cross-cloud marketplace? Because my 

understanding of the cloud marketplace as they stand today is it's a little bit fragmented. Like if I 
buy something in an Azure marketplace, it might be — I might not be able to buy that in the 

AWS marketplace or the Google marketplace and which could kind of make sense, because it's 
a different VM style that I would be installing it too, but with Kubernetes, it would be a little more 

standardized. Do you think that would create a better environment for distribution?

[0:53:12.9] SM: Yeah, this might be one of the cases where having some abstraction that sits 
across the cloud providers is actually beneficial. So having a common pricing and licensing 

model that can be sort of arm's length from any individual environment and maybe it goes 
beyond cloud providers. Maybe you can run that ISV software in a Kubernetes environment that 

you’re running in your own on-premises data center. 

Yeah, adoption of Kubernetes by the community broadly I think opens up a whole bunch of 
these opportunities, because you now do you have that consistent higher level abstraction that 

© 2018 Software Engineering Daily �20



SED 504 Transcript

now you can go and build on top of. This is just one of many opportunities I think for new ways 

of distributing software to happen. 

[0:54:02.7] JM: Okay, Sean. Well, great talking to you. I really enjoyed the conversation, and 
lots of fascinating insights on the business implications and the technical implications of 

Kubernetes. So thanks for coming on the show. 

[0:54:13.9] SM: All right. Thanks, Jeff. I really enjoyed it. 

[END OF INTERVIEW]

[0:54:17.9] JM: GoCD is an open source continuous delivery server built by ThoughtWorks. 
GoCD provides continuous delivery out of the box with its built-in pipelines, advanced 

traceability and value stream visualization. With GoCD you can easily model, orchestrate and 
visualize complex workflows from end-to-end. GoCD supports modern infrastructure with 

elastic, on-demand agents and cloud deployments. The plugin ecosystem ensures that GoCD 
will work well within your own unique environment. 

To learn more about GoCD, visit gocd.org/sedaily. That’s gocd.org/sedaily. It’s free to use and 

there’s professional support and enterprise add-ons that are available from ThoughtWorks. You 
can find it at gocd.org/sedaily.

If you want to hear more about GoCD and the other projects that ThoughtWorks is working on, 

listen back to our old episodes with the ThoughtWorks team who have built the product. You can 
search for ThoughtWorks on Software Engineering Daily. 

Thanks to ThoughtWorks for continuing to sponsor Software Engineering Daily and for building 

GoCD.

[END] 

© 2018 Software Engineering Daily �21


